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In this chapter, we apply the general equilibrium framework developed in Chapters
15 to 18 to economic situations involving the exchange and allocation of resources
under conditions of uncertainty. In a sense, this chapter offers the equilibrium
counterpart of the decision theory presented in Chapter 6 (and which we recommend
you review at this point).

We begin, in Section 19.B, by formalizing uncertainty by means of states of the
world and then introducing the key idea of a contingent commodity: a commodity
whose delivery is conditional on the realized state of the world. In Section 19.C we
use these tools to define the concept of an Arrow—Debreu equilibrium. This 1s simply
4 Walrasian equilibrium in which contingent commodities are traded. It follows from
ihe general theory of Chapter 16 that an Arrow-Debreu equilibrium results in a
Pareto optimal allocation of risk.

In Section 19.D, we provide an important reinterpretation of the concept of
Arrow-Debreu equilibrium. We show that, under the assumptions of self-fulfilling,
01 rational, expectations, Arrow—Debreu equilibria can be implemented by combining
irade in a certain restricted set of contingent commodities with spot trade that occurs
dlier the resolution of uncertainty. This results in a significant reduction in the number
#'ex ante (i.c., before uncertainty) markets that must operate.

In Section 19.E, we generalize our analysis. Instead of trading contingent
‘smmodities prior to the resolution of uncertainty, agents now trade assets; and
‘tead of an Arrow-Debreu equilibrium we have the notion of a Radner equilibrium.
We also discuss here the important notion of arbitrage among assets. The material
ol this section lies at the foundations of a very rich body of finance theory [good
“Wiroductions are Duffie (1992) and Huang and Litzenberger (1988)].

In Section 19.F, we briefly illustrate some of the welfare difficulties raised by the
ssibility of incomplete markets, that is, by the possibility of there being too few
¢t markets to guarantee a fully Pareto optimal allocation of risk.

Section 19.G is devoted to the issue of the objectives of the firm under conditions

Uncertainty. In particular, it gives sufficient conditions for shareholders to
‘e unanimously on the objective of market value maximization.
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Section 19.H takes a close look at the informational requirements of the theory
developed in this chapter. We see that the theory applies well to situations of
symmetric information across consumers (reviewed in Section 19.H); but its applic-
ability is more problematic in situations of asymmetric information. This provides a |
further argument for the techniques developed in Chapters 13 and 14 for the study |
of asymmetric information problems. [

For additional material and references on the topic of this chapter, see the
textbooks of Huang and Litzenberger (1988) and Duffie (1992) already mentioned,
or, at a more advanced level, Radner (1982) and Magill and Shafer (1991).

19.B A Market Economy with Contingent Commodities:
Description

As in our previous chapters, we contemplate an environment with L physical
commodities, I consumers, and J firms. The new element is that technologies,
endowments, and preferences are now uncertain.

Throughout this chapter, we represent uncertainty by assuming that technologies,
endowments, and preferences depend on the state of the world. The concept of state
of the world was already introduced in Section 6.E. A state of the world is to be
understood as a complete description of a possible outcome of uncertainty, the
description being sufficiently fine for any two distinct states of the world to be
mutually exclusive. We assume that an exhaustive set S of states of the world is given
to us. For simplicity we take § to be a finite set with (abusing notation slightly) §
elements. A typical element is denoted s = 1,..., S.

We state in Definition 19.B.1 the key concepts of a (state-)contingent commodity
and a (state-)contingent commodity vector. Using these concepts we shall then be able
to express the dependence of technologies, endowments, and preferences on the
realized states of the world.

Definition 19.B.1: For every physical commodity # =1, ..., L and state s = 1,...,S,
a unit of (state-) contingent commodity ¢s is a title to receive a unit of the physical
good ¢ if and only if s occurs. Accordingly, a (state-) contingent commodity vector
is specified by

X=(Xyqo s Xpqy ooy Xyg oo, X ) €RES,

and is understood as an entitlement to receive the commodity vector (Xgs + o« 0 Xgg)
if state s occurs.’

We can also view a contingent commodity vector as a collection of L random
variables, the /th random variable being (x,,, ..., x,5).
With the help of the concept of contingent commodity vectors, we can now
describe how the characteristics of economic agents depend on the state of the world.
To begin, we let the endowments of consumeri = 1,...,Ibea contingent commodity
vector: i

= LS
w.-—(wm,...,w,_“,...,w,s‘,...,w,_g,)eR . |

1. As usual, a negative entry is understood as an obligation to deliver.




jo8 19.B: A MARKET ECONOMY WITH CONTINGENT COMMODITIES:
et

DESCRIPTION

689

The meaning of this is that if state s occurs then consumer i has endowment vector
(@atr - w.,) € RE

The preferences of consumer i may also depend on the state of the world (e.g.,
the consumer’s enjoyment of wine may well depend on the state of his health). We
represent this dependence formally by defining the consumer’s preferences over
contingent commodity vectors. That is, we let the preferences of consumer i be
specified by a rational preference relation ; defined on a consumption set X; c RS,

gxample 19.B.1: As in Section 6.E, the consumer evaluates contingent commodity
vectors by first assigning to state s a probability n,; (which could have an objective
or @ subjective character), then evaluating the physical commodity vectors at state
s according to a Bernoulli state-dependent utility function u,(x,;,..., x.,;), and
finally computing the expected utility.? That is, the preferences of consumer i over
two contingent commodity vectors x;, x; € X, = R satisfy

x; Zix; ifandonlyif Y muuxyg ..., Xp) =Y M Xy, - - -\ Xig)-
3 f
n

It should be emphasized that the preferences >; are in the nature of ex ante
preferences: the random variables describing possible consumptions are evaluated
before the resolution of uncertainty.

Similarly, the technological possibilities of firm j are represented by a production
stYyc RS. The interpretation is that a (state-)contingent production plan y;€ RS is
a member of Y; if for every s the input-output vector (y,,;, ..., y.,;) of physical
commodities is feasible for firm j when state s occurs.

Example 19.B.2: Suppose there are two states, s, and s,, representing good and bad
weather. There are two physical commodities: seeds (¢ = 1) and crops (£ = 2). In
this case, the elements of Y; are four-dimensional vectors. Assume that seeds must
be planted before the resolution of the uncertainty about the weather and that a unit
of seeds produces a unit of crops if and only if the weather is good. Then

y;= (.VIU’ Y2150 Y12pp .szj) =(-L1,-10)

is a feasible plan. Note that since the weather is unknown when the seeds are planted,
the plan (-1, 1, 0, 0) is not feasible: the seeds, if planted, are planted in both states.
Thug, in this manner we can imbed into the structure of Y, constraints on production
related to the timing of the resolution of uncertainty.® =

To complete the description of an economy in a manner parallel to Chapters 16
4nd 17 it only remains to specify ownership shares for every consumer i and firm j-
In principle, these shares could also be state-contingent. It will be simpler, however,
10 let 6, > 0 be the share of firm j owned by consumer i whatever the state. Of
fourse 37, 0,, = 1 for every i.

* Ll The discussion in Section 6.E was for L = 1. It extends straightforwardly to the current case
21
3. A similar point could be made on the consumption side. If, for a particular commodity ¢,
puy Yector x, € X is such that all entries x,,,, s = 1,.. ., S, are equal, then we can interpret this as
“erting that the consumption of / takes place before the resolution of uncertainty.
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t=0 t=1

Information and the Resolution of U ncertainty

In the setting just described, time plays no explicit formal role. In reality, however,
states of the world unfold over time. Figure 19.B.1 captures the simplest example. In
the figure, we have a period 0 in which there is no information whatsoever on the
true state of the world and a period 1 in which this information has been completely
revealed.

We have already seen (Example 19.B.2) how, by conveniently defining consump-
tion and production sets, we can accomodate within our setup the temporal structure
of Figure 19.B.1: a commodity that has as part of its physical description its
availability at ¢ = 0 should never appear in differing amounts across states.

The same methodology can be used to incorporate into the formalism a much more general
temporal structure. Suppose we have T + {datest=0,1,..., T and, as before, S states, but
assume that the states emerge gradually through a tree, as in Figure 19.B.2. These trees are

s
1

2
3
4
5
6
t=2

similar to those described in Chapter 7. Here final nodes stand for the possible states realized
by time ¢ = T, that is, for complete histories of the uncertain environment. When the path
through the tree coincides for two states, s and ', up to time t, this means that in all periods
up to and including period ¢, s and s’ cannot be distinguished.

Subsets of S are called events. A collection of events & is an information structure ifitisa
partition, that is, if for every state s there is E € & with s € E and for any two E.E'€ &, E # E',
we have E A E' = (. The interpretation is that if s and s’ belong to the same event in & then
s and s’ cannot be distinguished in the information structure &.

To capture formally a situation with sequential revelation of information we look at &
family of information structures: (%, - . -, %, ..., %:). The process of information revelation
makes the &, increasingly fine: once one has information sufficient to distinguish between two
states, the information is not forgotten.

Figure 10.8.1
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..E ampe 19.B.3: Consider the tree in Figure 19.B.2. We have

% =({1,2,3,4,56}),
S =({1,2}, {3}, {4, 5, 6}),
# =1} {2}, (3}, {4}, {5}. {6}). »

The partitions could in principle be different across individuals. However, except in the
st section of this chapter (Section 19.H), we shall assume that the information structure is
e same for all consumers.

A pair (¢, E) where ¢ is a date and E € ¥ is called a date-event. Date-events are associated
Lith the nodes of the tree. Each date-cvent except the first has a unique predecessor, and each
Jute-cvent not at the end of the tree has one or more successors.

With this temporal modeling it is now necessary to be explicit about the time at which a
chysical commodity is available. Suppose there is a number H of basic physical commodities
\hread, leisure, etc.). We will use the double index ht to indicate the time at which a
.smmodity h is produced, appears as endowment, or is available for consumption. Then x,,,
.;ands for an amount of the physical commodity h available at time ¢ along the path of state s.

Fortunately, this multiperiod model can be formally reduced to the timeless structure
ntroduced above. To see this, we define a new set of L = H(T + 1) physical commodities,
wich of them being one of these double-indexed (i.e., ht) commodities. We then say that a vector
- = RY is measurable with respect to the family of information partitions (%,,..., %) if,
for every hts and hts’, we have that z,,, = z,,, whenever 5,5’ belong to the same element of the
yartition ;. That is, whenever s and s’ cannot be distinguished at time ¢, the amounts assigned
1# the two states cannot be different. Finally, we impose on endowments w; € RS, consumption
wts X, ¢ R™ and production sets ¥; < RS the restriction that all their elements be measurable
with respect to the family of information partitions. With this, we have reduced the multiperiod
\lructure to our original formulation.

Arrow—Debreu Equilibrium

We have seen in Section 19.B how an economy where uncertainty matters can be
described by means of a set of states of the world S, a consumption set X; < RY, an
cndowment vector w; € RS, and a preference relation =, on X; for every consumer
5, together with a production set ¥; = R and profit shares (6,,, ..., 8,,) for every
firm f.

We now go a step further and make a strong assumption. Namely, we postulate
the existence of a market for every contingent commodity ¢s. These markets open
before the resolution of uncertainty, at date 0 we could say. The price of the
commodity is denoted p,,. What is being purchased (or sold) in the market for the
‘ontingent commodity /s is commitments to receive (or to deliver) amounts of the
physical good ¢ if, and when, state of the world s occurs. Observe that although
deliveries are contingent, the payments are not. Notice also that for this market to
be well defined it is indispensable that all economic agents be able to recognize the
sxcurrence of s. That is, information should be symmetric across economic agents.
This informational issue will be discussed further in Section 19.H.

Formally, the market economy just described is nothing but a particular case of
the economies we have studied in previous chapters. We can, therefore, apply to our
market economy the concept of Walrasian equilibrium and, with it, all the theory
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developed so far. When dealing with contingent commodities it is customary to call

the Walrasian equilibrium an Arrow-Debreu equilibrium.*
Definition 19.C.1: An allocation
O . oxtyt YD EX X x Xy x Yy x - x Y, RESUFD
and a system of prices for the contingent commodities p = (p,y, . . . . Prs) € RES
constitute an Arrow-Debreu equilibrium if: \\
(i) For every /, y} satisfies p-y;' 2 p-y forallyey.
(i) For every /, x?! is maximal for >; in the budget set
{xieX;:px;<p-w;+3;0,py!}. . z
(i) Tixt =%,y + ;. !
The welfare and positive theorems of Chapters 16 and 17 apply without @
modification to the Arrow-Debreu equilibrium. Recall from Chapter 6, especially X
Sections 6.C and 6.E, that, in the present context, the convexity assumption takes on ‘
an interpretation in terms of risk aversion. For example, in the expected utility setting the consu
of Example 19.B.1, the preference relation 2, is convex if the Bernoulli utilities u (x,,) 5°°°°d o
are concave (see Exercise 19.C.1). equllib:ll
The Pareto optimality implication of Arrow-Debreu equilibrium says, effectively, likely (
that the possibility of trading in contingent commodities leads, at equilibrium, to an £ )
efficient allocation of risk. ;
.. . . is that n«
It is important to realize that at any production plan the profit of a firm, p- Y Sont 2
is a nonrandom amount of dollars. Productions and deliveries of goods do, of course, 3 .
depend on the state of the world, but the firm is active in all the contingent markets point ol £t
and manages, so to speak, to insure completely. This has important implications for ratio of |
the justification of profit maximization as the objective of the firm. We will discuss pfps <1
N . . . i
this point further in Section 19.G. continger
Example 19.C.1: Consider an exchange economy with I = 2, L = 1, and S = 2. This good is s
lends itself to an Edgeworth box representation because there are precisely two theory: tl
contingent commodities. In Figures 19.C.1(a) and 19.C.1(b) we have w, =(1,0), are com|
w, =(0, 1), and utility functions of the form = ,u(x,,) + myux,,), where (n,,, 73,) consump
are the subjective probabilities of consumer i for the two states. Since 0, + @, = (1, 1) “market
there is no aggregate uncertainty, and the state of the world determines only which cadowm

consumer receives the endowment of the consumption good. Recall from Section 6.E
(especially the discussion preceding Example 6.E.1) that for this model [in which the
u{-) do not depend on s], the marginal rate of substitution of consumer i at any
point where the consumption is the same in the two states equals the probability
ratio n,,/n,,.

In Figure 19.C.1(a) the subjective probabilities are the same for the two consumers
(e, my, = m;,) and therefore the Pareto set coincides with the diagonal of the box
(the box is a square and so the diagonal coincides with the 45-degree line, where the
marginal rates of substitution for the two consumers are equal: n,,/n,, = 7,,/%,,).
Hence, at equilibrium, the two consumers insure completely; that is, consumer i's
equilibrium consumption does not vary across the two states. In Figure 19.C.1(b)

4. Secc Chapter 7 of Debreu (1959) for a succinct development of these ideas.
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SECTION 19.C: ARROW DEBREV
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1he consumer’s subjective probabilities are different. In particular, n,, < =, (i.e., the
second consumer gives more probability to state 1). In this case, each consumer’s
equilibrium consumption is higher in the state he thinks comparatively more
likely (relative to the beliefs of the other consumer). =

Example 19.C.2: The basic framework is as in Example 19.G.1. The difference
is that now there is aggregate risk: w, + w, = (2, 1). The utilities are state inde-
pendent and the probability assessments are the same for the two traders: (r,, #,). The
corresponding Edgeworth box is represented in Figure 19.C.2. We see that at any
point of the Pareto set the common marginal rate of substitution is smaller than the
ratio of probabilities (see Exercise 19.C.2). Hence at an equilibrium we must have
pi/Pa < my/7y, OF py/my < py/m,. If, say, =, = n, = 4, then p, < p,: The price of one
contingent unit of consumption is larger for the state for which the consumption
good is scarcer. This constitutes the simplest version of a powerful theme of finance
theory: that contingent instruments (in our case, a unit of contingent consumption)
are comparatively more valuable if their returns (in our case, the amount of
consumption they give in the different states) are negatively correlated with the

“market return” (in our case, the random variable representing the aggregate initial
endowment). @
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Figure 19.C.1
(a) No aggregate risk:
same probability
assessments.

(b) No aggregate risk:
different probability
assessments.

Figure 19.C.2

There is aggregate risk:
p./n, negatively
correlated with total
endowment of
commodity /.






